
 IJMT Volume 6, Issue 4 ISSN: 2249-1058
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Marketing and Technology
http://www.ijmra.us

 101

April

2016

An Automated Approach to UML Testing

Anbunathan R
*

 AnirbanBasu
**

ABSTRACT

Model-based testing has been gaining attention among the software testing community for

Functional Testing. With increasing use of UML methodologies, generating test cases from

UML diagrams is being looked at as an attractive proposition. In this paper a systematic

procedure is presented for functional test case generation from UML diagrams. Functional test

cases are generated from UML Sequence diagrams and MC/DC test cases are generated from

Activity diagrams, after Sequence and Activity diagrams are translated to corresponding XMI

files. A case study is presented to illustrate the application of the method. The advantages of the

proposed method with others are also discussed in details.

KEY WORDS: UML diagram, UML testing, Test case generation, Sequence diagram,

Activity diagram, XMI files, Model Based Testing, Test automation.

*
 Test Manager, and Research Scholar, Bharathiar University, Coimbatore, India

**
 Professor, Department of CSE, APS College of Engineering, Bangalore, India

 IJMT Volume 6, Issue 4 ISSN: 2249-1058
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Marketing and Technology
http://www.ijmra.us

 102

April

2016

1. Introduction

Model-Based Testing (MBT) involves developing a model from functional requirements and

helps in generation of test cases for all scenarios. Successful utilization of MBT requires

software requirements to be precisely defined in order to accurately characterize the system

behavior [2]. With the proliferation of OO systems and with the increasing use of UML

diagrams, UML testing dealing with generation of test cases from Sequence diagram and

Activity diagram is gaining acceptance [15].

Many methods have been proposed for UML Testing. The method proposed in this paper covers

both manual and automated way of generating test cases from Sequence and Activity diagrams.

Test Cases from Sequence diagram help to check if system behavior is as per the expected timing

sequence. Activity diagram based test cases help to test dynamic behavior of the system, using

different combination of test inputs. The method proposed here generates Multiple

Conditions/Decisions coverage (MC/DC) [13] test cases from Activity diagram. These test cases

help to achieve 100% test coverage. Also this method generates reduced number of test cases,

using Pairwise testing method. The proposed method is discussed in Section 3. The method is

illustrated in Section 4with an example and compared with other methods in Section 5.

2. Related Work

This section discusses other methods that have been proposed for UML Testing. Test Case

Generation by means of UML Sequence Diagrams and Labeled Transition Systems by Emanuela

G. Cartaxo[4], introduced UML Sequence diagram for test case generation. Another approach is

UML Sequence diagram along with OCL (Object Constraint Language)[6], which is used for

generating test cases. Test framework for Model Based Testing (MBT) is proposed in [10] which

incorporate UML test profile. One more approach is converting Sequence diagram into XML

file, parsing XML file, and then generating test cases [12].Monalisa Sarma et al. [7] transformed

a UML Use case diagram into a graph called Use Case Diagram Graph (UDG) and Sequence

Diagram into a graph called the Sequence Diagram Graph (SDG) and then integrated UDG and

SDG to form the System Testing Graph (STG). The STG is then traversed to generate test cases

for system testing. They [7] have used state-based transition path coverage criteria for test case

generation. There are some other methods [17][18][19] that derive test cases from UML

 IJMT Volume 6, Issue 4 ISSN: 2249-1058
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Marketing and Technology
http://www.ijmra.us

 103

April

2016

diagrams using a similar approach. But none of the methods discuss generation of MC/DC test

cases.

In [4], Labeled Transition Systems (LTS) based test case generation has been proposed. Test

case generation algorithms from LTS and tools to support this generation are also available.

UMLAUT (Unified Modeling Language All pUrposes Transformer) is a tool for the

manipulation of UML models that includes the UML Sequence diagram. It is a general

framework for UML model transformation [20]. It is developed within the Triskell Project. This

framework is used with the TGV tool to generated test cases. TGV (Test Generation with

Verification technology) is a conformance test generator [21] [22]. Then, the transformation

from UML Sequence diagram to LTS is done by UMLAUT tool and the test case generation by

TGV tool [23].

In [24], test case generation by means of UML Sequence diagrams and Markov Chains has been

presented. UML Sequence diagrams and Message Sequence Charts are transformed into Markov

Chains. From the Markov Chains test cases are generated. Their work focuses on statistical usage

testing.

3. Generation of Test Cases from UML Diagrams

In this section, a method is discussed on how test cases can be generated from Sequence

diagram, Activity diagram and generating corresponding XMI files.

3.1 Sequence diagram

The input and output system events related to System Under Test (SUT), can be illustrated in

UML Sequence diagrams [3].Before proceeding to a logical design of how a software application

works, it is useful to define its behavior by a system Sequence diagram besides Use cases, and

system contracts [3].

 IJMT Volume 6, Issue 4 ISSN: 2249-1058
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Marketing and Technology
http://www.ijmra.us

 104

April

2016

Figure 1: Sequence diagram example

A Sequence diagram consists of:

• Object: A Sequence diagram consists of sequences of interaction among different objects. It is

a primary element involved in this diagram, being represented by rectangles labeled A and B

(Figure 1).

• Message: The interactions between different objects in a Sequence diagram are represented by

messages. A message is denoted by a directed arrow and the notation differs depending on the

message type (Different message types are represented in the following manner. simple

messages (with thick arrow), special messages to create (with create label) or destroy objects

(with destroy label), and message response (dotted arrow)).

3.2 Generation of Test cases from Sequence diagram

The combination of simple message and return message is considered as one sequence. For

example, the simple messages sent from object A to Object B constitute the ‗test procedure‘. The

return message from Object B to Object A constitute the ‗Expected result‘. In this way each

sequence is converted into one test case. The parser continuously scans till it finds ‗return

message‘ and extracts one sequence.

 IJMT Volume 6, Issue 4 ISSN: 2249-1058
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Marketing and Technology
http://www.ijmra.us

 105

April

2016

Figure 2: Reference Sequence diagram

For example, the Sequence diagram shown in Figure 2 can be converted into test case shown in

Table 1.

Table1: Sample test case

Test case description captures all messages for a particular sequence. The expected result is the

return message from the SUT.

StarUML [9] supports export of UML models into XMI file [14], which can be parsed in

Java/Eclipse environment. After parsing XMI file, sequences, messages and return messages are

extracted. Then the corresponding test cases are generated.

Test

Cas

e ID

Pre-

Condition Description Expected Result

Actual

result

Verd

ict

TC1 Start

Applicatio

n

Message1 from ObjectA to

ObjectB ->Message2 from

ObjectA to ObjectB -

>ReturnMessage from

ObjectB to ObjectA

The following

message is

expected

ReturnMessage

from ObjectB

to ObjectA

 IJMT Volume 6, Issue 4 ISSN: 2249-1058
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Marketing and Technology
http://www.ijmra.us

 106

April

2016

3.3Activity diagram

Activity Diagram is a special form of Statechart Diagram that offers rich notation to show a

sequence of activities. It may be applied to any purpose (such as visualizing the steps of a

computer algorithm), but is considered especially useful for visualizing business workflows and

processes, or Use cases [3].

Some of the components of Activity diagram are initial state, final state, decision, transition, and

action state (Figure 3).

Figure 3: Activity diagram example

3.4Generation of Test Cases from Activity diagram

In this approach, decision and transitions play major role. Decision is expected to have variable

used in SUT. Transitions are expected to have the corresponding values to these variables. For

example, if ‗customer type‘ is the variable in the system, then the corresponding values can be

Employee and Non-Employee. This is illustrated in the Figure 4, which is a segment of the

Activity diagram.

Figure 4: Segment of POS Activity diagram

 IJMT Volume 6, Issue 4 ISSN: 2249-1058
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Marketing and Technology
http://www.ijmra.us

 107

April

2016

This variable along with corresponding values constitutes a column in decision table as shown in

Table2.

Table 2: Sample decision table

customer type Variable2 Variable3

employee Value1 Value1

non-employee Value2 Value2

Activity diagram is exported into corresponding XMI file in StarUML environment. Parsing

technique is used to parse XMI file and then extract variables and their corresponding values. A

decision table with these variables and values can be created automatically. After decision table

is created, test cases can be generated using Pairwise test tool called ‗Allpairs‘ tool [25].

Expected result is extracted from Active state by traversing through transitions. For example, if

‗customer type‘ is ‗Employee‘, the corresponding Expected result is ‗Add discount‘ as shown in

Figure 4.

4. Illustration of the method

In this section, the proposed method is discussed with an example on testing Purchase Online

System (POS) which is the SUT in this case [3]. Both Manual and Automated methods of

generation of test cases from Sequence and Activity diagrams are discussed. Manual method is

discussed first to illustrate complexity involved in creating test cases and helps to understand

logic behind the creation of test cases. Automated method shows how same test cases can be

easily generated with the click of a single button.

4.1 Manual Generation of Test Cases

Steps involved in creating test cases from Activity diagram manually are explained from section

4.1.1 to 4.1.4.

Similarly creating test cases manually from Sequence diagram is illustrated in section 4.1.5.

The objective of proposed method is to remove this manual effort in creating test cases.

 IJMT Volume 6, Issue 4 ISSN: 2249-1058
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Marketing and Technology
http://www.ijmra.us

 108

April

2016

4.1.1 Identification of Use case scenarios

The Use case diagram as shown in Figure 5 belongs to POS. This has actors such as cashier who

takes money from customer and initiates new sale, and payment authorization service which

authorizes the online payment.

Figure 5: Usecase diagram for POS

The following Use case scenarios are identified:

1. Customer arrives at POS checkout with goods and/or services to purchase.

2. Cashier starts a new sale.

3. Cashier enters item identifier.

4. System records sale line item and presents item description, price, and running total. Price

calculated from a set of price rules.

5. System presents total with taxes calculated.

6. Cashier tells Customer the total, and asks for payment.

7. Customer pays and System handles payment.

8. System logs completed sale and sends sale and payment information to the external

accounting system (for accounting and commissions) and Inventory system (to update

inventory).

9. System presents receipt.

10. Customer leaves with receipt and goods (if any).

4.1.2 Identification of Flows

From the above scenarios, basic and alternative flows can be identified manually.

 IJMT Volume 6, Issue 4 ISSN: 2249-1058
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Marketing and Technology
http://www.ijmra.us

 109

April

2016

Basic flows

B1. Customer identifies goods for purchase

B2. Cashier starts new sale

B3. Cashier enters goods id(s) in system

System returns description, price and running total with tax

B4. Customer pays (By cash)

System accepts payment

B5. System sends sale information to external accounting system and inventory system

B6. System presents receipt (Normal receipt)

B7. Customer leaves with goods and receipt

Alternative flows

A1. Customer can be Employee (eligible for discount) and Non-Employee

A2. System error, restart and recover (options: 1. Restart application 2. Restart PC)

A3. Invalid/Multiple ids (Options: 1. Invalid id 2. Add multiple ids 3. Remove id 4. Remove

multiple ids 5. Cancel sale)

A4. Different payment modes (Options: 1. Credit card 2. Debit card 3. Cheque)

A6. Gift receipt (No price is displayed)

 IJMT Volume 6, Issue 4 ISSN: 2249-1058
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Marketing and Technology
http://www.ijmra.us

 110

April

2016

The Activity diagram as shown in Figure 6 represents basic flow along with alternative flow for

POS:

Figure 6: Activity diagram for POS

4.1.3 Identification of variables and values

Table 3lists all basic flows along with corresponding variables and options for each variable.

 IJMT Volume 6, Issue 4 ISSN: 2249-1058
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Marketing and Technology
http://www.ijmra.us

 111

April

2016

Table 3: Basic flow with variables and values

4.1.4 Creation of test cases

The manual step to create the first test case, involves picking and connecting any options. To

create the second test case, one of the other options that were not used in the first one is picked.

This process of adding test cases is continued until all nodes of the graph are covered, which is

illustrated in Figure 7.

Allocation of test cases can also be represented in the form of a test case allocation matrix, as

shown in the Table 4.

Basic

steps

Variable Options to be tested

B1 Custome

r type

Employe

e

Non-

Employee

B2 New

sale

No error Application

error

System error

B3 Sale

type

Add id Invalid id Add multiple

ids

Remov

e id

Remove

multiple

id

Cancel

sale

B4 Payment

mode

Cash Credit card Debit card Cheque

B5 System

update

B6 Receipt

type

Normal

receipt

Gift receipt

B7 Custome

r left

 IJMT Volume 6, Issue 4 ISSN: 2249-1058
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Marketing and Technology
http://www.ijmra.us

 112

April

2016

Table 4: Test case allocation matrix

Figure 7: Process of adding test cases one by one

Basic

steps

Variable TC1 TC2 TC3 TC4 TC5 TC6

B1 Customer

type

Non-Emp Emp Non-Emp Emp Non-

Employee

Non-Emp

B2 New sale No error App error System

error

No error System error App error

B3 Sale type Invalid id Add id Add mult

ids

Remove id Remove mult

ids

Cancel sale

B4 Payment

mode

Cash Credit card Debit card Cheque Debit card NA

B5 System

update

System

update

System

update

System

update

System

update

System update NA

B6 Receipt type Normal

receipt

Gift receipt Normal

receipt

Gift receipt Gift receipt NA

 IJMT Volume 6, Issue 4 ISSN: 2249-1058
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Marketing and Technology
http://www.ijmra.us

 113

April

2016

4.1.5 Creation of Test cases from Sequence diagram

The Sequence Diagram of POS as shown in Figure 8 illustrates the external actors that interact

directly with the system, the system (as a black box), and the system events that the actors

generate. Time proceeds downward and the ordering of events should follow their order in the

Use case.

The following sequences can be identified from Sequence diagram

1. makeNewsale()->enterItem()->description, total

2. endsale()->total with taxes

3. makePayment->change due,receipt

Figure 8: Sequence diagram for POS

A sequence starts with a forward message and sequence ends when a return message is found.To

test these sequences the following test cases are identified as shown in Table 5:

 IJMT Volume 6, Issue 4 ISSN: 2249-1058
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Marketing and Technology
http://www.ijmra.us

 114

April

2016

Table 5: Created test cases from Sequence diagram

The second test case can be executed only if first test case is successfully executed. Similarly the

thirdtest case can be executed after successful execution of first and second.

4.2 Automatic Generation of Test Cases

The detailed steps for generating test cases from Activity diagram are given in section 4.2.1 and

4.2.2.

Similarly steps to generate test cases from Sequence diagram are given in section 4.2.3 and 4.2.4.

4.2.1 Process Flow Diagram from Activity diagram

4.2.2

Figure 9 illustrates the steps involved in generating test cases automatically from Activity

diagram.

Figure 9: Process flow diagram from Activity diagram

Test

case

id

Pre-

condition

Description (Sequence) Expected result

TC1 Open

applicatio

n

makeNewsale()->enterItem()-

>description, total

System needs to return item

description along with cost

TC2 Items are

entered

endsale()->total with taxes Items are finalized and system

should return total cost

TC3 Sale end makePayment->change

due,receipt

Payment should be made and

receipt is received from system

 IJMT Volume 6, Issue 4 ISSN: 2249-1058
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Marketing and Technology
http://www.ijmra.us

 115

April

2016

4.2.3 Generation of Test cases from Activity diagram

The following two process steps are involved to generate test cases automatically from Activity

diagram. First process step is to generate decision table by parsing XMI file, which is exported

from corresponding Activity diagram in StarUML tool environment. Second, use this decision

table to generate optimized test cases using Allpairs tool. These process steps are elaborated as

given below.

Step1: Generation of decision table from Activity diagram

The following steps are required to generate the decision table from Activity diagram:

1. Draw Activity diagram using StarUML tool. Export Activity diagram from StarUML to

XMI file.

2. Parse XMI file using Java code in Eclipse environment.

3. Identify variables from branches, corresponding values of the variables from transitions

automatically.

4. Generate the following decision table, which will be used to generate test cases using All

pairs tool.

Table 6 shows decision table which is automatically generated from Activity diagram, by parsing

corresponding XMI file.

Table 6: Decision table generated from Activity diagram

System

state receipt type payment mode

customer

type

transaction

type

no error normal cash employee add id

app error gift credit card non-

employee

remove id

system

error

 debit card invalid id

 IJMT Volume 6, Issue 4 ISSN: 2249-1058
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Marketing and Technology
http://www.ijmra.us

 116

April

2016

Step2: Usage of Pairwise test tool for generating test cases

Test cases can be generated using Pairwise test tool, which takes decision table as input. Allpairs

[25] tool is one of the Pairwise test tools, which is used in this proposed method.

Table7 shows generated test cases by ‗Allpairs‘ tool. Some of the test cases are invalid. For

example, in case of ‗Cancel sale‘ option, different payment modes are invalid, as payment is not

required. Such cases can be excluded.

Table7: Generated test cases from Activity diagram

 cheque add multiple

ids

 remove mult

ids

 cancel sale

TC

ID customer type system state transaction type

payment

mode

receipt

type

1 employee no error add id cash normal

2 non employee application error add id credit card gift

3 non employee application error remove id cash normal

4 employee no error remove id credit card gift

5 employee system error invalid id debit card normal

6 non employee no error invalid id cheque gift

7 employee application error add multiple ids debit card gift

8 non employee system error add multiple ids cheque normal

9 employee system error remove multiple

ids

cash gift

 IJMT Volume 6, Issue 4 ISSN: 2249-1058
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Marketing and Technology
http://www.ijmra.us

 117

April

2016

Step3: Extraction of Expected result from Active state

The following steps are required to extract Expected result from Activity diagram:

1. Mapping table between transitions and corresponding Action state index is created. For

example, for the transition ‗customer type = employee‘, the corresponding Action state index is

extracted as ‗UMLActionState.9‘, during first parse.

10 non employee no error remove multiple

ids

credit card normal

11 non employee no error cancel sale debit card normal

12 employee application error cancel sale cheque gift

13 ~employee system error add id credit card ~normal

14 ~non employee system error remove id debit card ~gift

15 ~non employee application error invalid id cash ~normal

16 ~employee no error add multiple ids cash ~gift

17 ~employee application error remove multiple

ids

cheque ~normal

18 ~non employee system error cancel sale cash ~gift

19 ~non employee ~no error add id debit card ~gift

20 ~employee ~no error remove id cheque ~normal

21 ~employee ~application

error

invalid id credit card ~gift

22 ~non employee ~system error add multiple ids credit card ~normal

23 ~non employee ~application

error

remove multiple

ids

debit card ~gift

24 ~employee ~system error cancel sale credit card ~normal

25 ~non employee ~system error add id cheque ~gift

 IJMT Volume 6, Issue 4 ISSN: 2249-1058
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Marketing and Technology
http://www.ijmra.us

 118

April

2016

2. Mapping table is updated with Action state name, for every Action state index as shown

Table 8. For example, by using Action state index ‗UMLActionState.9‘, the corresponding

Action state name is extracted as ‗apply discount‘, during second parse.

Table 8: Mapping table to extract Expected result

3. Test case Table 7 is updated with Expected result by referring to mapping Table 8.

Updated Test case table is shown in Table 9 for one test case.

Table 9: Updated Test case table with Expected result

Transition Action state index

Action state

name

customer type

= employee

UMLActionState.9 apply discount

TC

ID

custom

er type

system

state

transac

tion

type

payment

mode

receipt

type

Expected result

1 employ

ee

no

error

add id cash normal 1.apply discount 2.regular

start

3.add id action

4.pay cash 5.Provide Normal

receipt

 IJMT Volume 6, Issue 4 ISSN: 2249-1058
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Marketing and Technology
http://www.ijmra.us

 119

April

2016

4.2.3 Process Flow Diagram from Sequence diagram

Figure 10 illustrates the steps involved in generating test cases from Sequence diagram.

Figure 10: Process flow diagram from Sequence diagram

4.2.4 Generation of Test cases from Sequence diagram

The following steps are involved to generate test cases from Sequence diagram automatically.

1. Draw Sequence diagram using StarUML tool.

2. Export Sequence diagram from StarUML to XMI file.

3. Parse XMI file using XMIparser.java file in Eclipse environment.

4. Identify sequences automatically.

5. Generate XL based test cases using these sequences.

Table 10 shows generated test cases from Sequence diagram.

Table 10. Generated test cases from Sequence diagram

5. ‘’’Experimental results

Test

case

id

Pre- condition Description Expected result Actual

result

Verdi

ct

TC1 Start

Application

makeNewsale -->endItem

-->description,total

The following message is

expected

description,total

TC2 Successful

completion of

TC1

endSale -->total with

taxes

The following message is

expected

total with taxes

TC3 Successful

completion of

TC2

makePayment -->change

due, receipt

The following message is

expected

change due, receipt

 IJMT Volume 6, Issue 4 ISSN: 2249-1058
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Marketing and Technology
http://www.ijmra.us

 120

April

2016

The proposed approach is deployed in few applications and results are obtained. The following

applications are considered for experimentation:

a. Account system

b. Borrow book

c. Currency controller

d. Ice vending machine

e. Safe home system

f. Simple ATM (SATM)

g. Triangle program

h. Wiper controller

5.1 Description

The brief descriptions of all applications are given in the following section:

5.1.1 Account system

An Account system helps user to open ‗new‘ account. Once account is created user can do

various transactions such as balance checking, debit money, credit etc. If the balance is

maintained less than 0, then the status is changed to ‗overdrawn‘. If the account is not accessed

for more than 5 years, then the status is changed to ‗locked‘. Also Account system allows user to

close the account.

5.1.2 Borrow book

The Borrow book application allows user to search book in the database. If book is found in the

database, user can reserve the book in his name. The Borrow book application has login feature

and checks authentication of the user.

5.1.3 Currency converter

The Currency converter application allows user to convert currency from USD or Indian rupees

to equivalent other country currencies. It allows user to enter input value and select target

country. It throws error, if either input value not entered or target country is not selected.

 IJMT Volume 6, Issue 4 ISSN: 2249-1058
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Marketing and Technology
http://www.ijmra.us

 121

April

2016

5.1.4 Ice cream vending machine

The Ice cream vending machine allows user to purchase ice creams automatically. It allows user

to select different flavor of ice creams such as Vanilla, Chocolate, Strawberry and Butterscotch

etc. It calculates money based on selected flavor and number of ice creams ordered. When user

inserts money into the slot, it calculates balance amount and returns back.

5.1.5 Safe home system

The Safe home system is a security system that helps user to monitor home. It alerts home owner

in case of any intruder entering home, through various mechanisms such as sending SMS,

making emergency call, activating alarm, video recording and blinking control panel.

5.1.6 Simple ATM system

The Simple ATM system provides banking transactions such as withdraw money, deposit

money, balance checking, print mini statement etc. User requires a valid debit card and need to

enter valid PIN number to avail banking services.

5.1.7 Triangle program

The Triangle program displays triangle type such as Isosceles, Scalene, Equilateral based on the

values of the sides a, b, c. It displays an error message, in case of invalid entry.

5.1.8 Wiper controller

The Wiper controller allows user to set different wiper speed by changing position of lever and

dial. The lever position can be changed to off, inter, low and high. When lever position is set to

inter, dial positions can be changed to 1, 2 and 3.

5.2 Summary

Table 11 shows summary of Sequence and Activity diagram test cases. Column B shows

MC/DC test cases possible to derive from Activity diagram. Column C shows optimized number

of test cases using Allpairs tool.

 IJMT Volume 6, Issue 4 ISSN: 2249-1058
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Marketing and Technology
http://www.ijmra.us

 122

April

2016

Table 11.Summary of Sequence and Activity diagrams test cases

Project name

Sequence diagram

Test cases

(A)

Activity diagram Test cases

Total Test

cases

(A+C)

Before

optimization

(B)

After

optimization

(C)

Account system 9 96 13 22

Borrow book 6 4 4 10

Currency converter 14 567 23 37

Ice vending

machine

5 72 18 23

Safe home 8 480 16 24

Simple ATM 7 240 16 23

Triangle program 5 128 8 13

Wiper controller 6 12 12 18

5.3 Mutation analysis

The effectiveness of generated test cases for Triangle program is checked using fault injection

technique called mutation analysis [26][27]. Mutants are created from Triangle program after

injecting errors in program to make program faulty. If test case set is capable of capturing these

errors, then mutants are killed by tests. The mutation analysis report after creating mutants for

Triangle program is shown in Table 12.

Totally 12 test cases failed because of 5 mutants. Mutant 1 has maximum failures of 4 out of 13

test cases executed. This shows even though test cases are generated from design, any defect

injected by developer is easily captured by these cases.

Table 12.Mutation analysis for Triangle program test cases

Mutatio

n

number

Change in code

Number of test cases failed in

Mutants

Total

Fails

per

MutanCorrect Buggy

Sequence

diagram

Activity

diagram

 IJMT Volume 6, Issue 4 ISSN: 2249-1058
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Marketing and Technology
http://www.ijmra.us

 123

April

2016

t

1 !(a>0 && b>0 &&

c>0)

!(a>0 || b>0 ||

c>0)

1 3 4

2 (a<b+c)&&(b<c+a)&

&

(c<a+b)

(a<b+c)||(b<c+a)|

|

(c<a+b)

1 1 2

3 a==b && b==c &&

c==a

a==b || b==c ||

c==a

1 1 2

4 (a==b &&

b<>c)||(a==c &&

a<>b)||

(b==c && a<>c)

(a==b && b<>c)

&&(a==c &&

a<>b) &&(b==c

&& a<>c)

1 1 2

5 a<>b && b<>c &&

c<>a

a==b && b<>c

&& c<>a

1 1 2

Total fails category wise 5 7 12

6. Comparison with Other Methods

There are others who have considered a Sequence diagram as input for test case generation. An

example can be seen in [17], where the Seditec tool generates automatically test stubs for the

classes and methods whose behavior is specified in the Sequence diagrams. This approach is

different from the proposed method because the method in [17] generates test stubs, while the

proposed method generates test cases for sequences in the case of Sequence diagram and builds a

decision table in the case of Activity diagram. From this decision table, optimized number of test

cases is generated using ‗Allpairs‘ test tool.

In [17], the test pattern ―Round-trip Scenario Test Pattern‖ is presented. This pattern uses UML

Sequence Diagrams as input, but it does not use combination of messages and return-messages

for test case generation. It uses flow graphs. In the proposed method, combination of messages

and return-messages is considered as one sequence. This method ensures 100% sequence

coverage, while generating test cases.

 IJMT Volume 6, Issue 4 ISSN: 2249-1058
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Marketing and Technology
http://www.ijmra.us

 124

April

2016

There are several research projects [18][19] proposing concepts for UML based test tools.

However, most of them rely on state diagrams and/or demand extensive additional effort from

the designers by introducing new formalisms into the UML, which in our experience

significantly lowers the chance of those concepts being accepted in industry projects. The

proposed method addresses generating Multiple Conditions/Decisions Coverage (MC/DC) test

cases from Activity diagram, which ensures 100% transitions and active states coverage. The

usage of Allpairs tool ensures reduces number of test cases generated. For example, the test cases

generated as shown in Table 7 are reduced to 25 cases, even though there 288 combinations are

possible for the decision table shown in Table 6.

7. Conclusions

In this paper, a method has been proposed to generate functional test cases from UML Sequence

diagram and MC/DC test cases from Activity diagram. As these diagrams are developed early in

the development cycle, early generation of test cases is possible by the proposed method.

Besides, the proposed method is more prone to automation and reduces effort for writing

exhaustive test cases.

The case study discussed here has shown that the proposed method can be used for applications

in both PC based and in embedded environments. As Sequence diagram represents sequences of

combined atomic services, generating test cases for testing these atomic services is very useful.

Similarly, as Activity diagram represent dynamic behavior of the system, and generating MC/DC

test cases helps to test system behavior under various input conditions.

REFERENCES

[1] P. Jorgensen, Software Testing: A Craftsman‘s Approach. CRC Press,2002.

[2] B. Beizer, Software Testing Techniques, 2nd ed. Van NostrandReinhold, 1990.

[3] Craig Larman, ―Applying UML and patterns ", Addison Wesley, 2000.

 IJMT Volume 6, Issue 4 ISSN: 2249-1058
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Marketing and Technology
http://www.ijmra.us

 125

April

2016

[4] Emanuela G. Cartaxo, Francisco G. O. Neto and Patr´ıcia D. L. Machado, "Test Case

Generation by means ofUML Sequence Diagrams and Labeled Transition Systems", IEEE 2007.

[5] A.V.K. Shanthi, Dr.G.Mohan Kumar,‖Automated Test Cases Generation from UML

Sequence Diagram‖, International Conference on Software and Computer Applications 2007.

[6] Li Bao-Lin, Li Zhi-shu, Li Qing, Chen Yan Hong ,‖ Test Case automate Generation from

UML Sequence diagramand OCL Expression‖, International Conference on Computational

Intelligence and Security 2007, pp 1048-52.

[7] Monalisa Sarma, Debasish Kundu, Rajib Mall,‖Automatic Test Case Generation from UML

Sequence Diagrams‖, 15th International Conference on Advanced Computing and

Communications 2007.

[8] Qaisar A. Malik, Dragos¸ Trus¸can, Johan Lilius,‖Using UML Models and Formal

Verification in Model-Based Testing‖, 17th IEEE International Conference and Workshops on

Engineering of Computer-Based Systems 2010.

[9] StarUML Tool. http://staruml.sourceforge.net/en/, Jul. 2011.

[10] Padma Iyenghar1, Elke Pulvermueller1, Clemens Westerkamp,‖Towards Model-Based Test

Automation for Embedded SystemsUsing UML and UTP‖, IEEE ETFA 2011.

[11] Object Constraint Language 2.0 is available from Object Mangement Group‘s web site

http://www.omg.org/

[12] Vinaya Sawant, Dragos¸ Ketan Shah,‖Automatic Generation of Test Cases from UML

Models‖, International Conference on Technology Systems and Management 2011.

[13] G.J. Myers, C.sandler, T.Badgett, and T.M.Thomas. ―The art of softwareTesting‖ , 2nd

Edition.Wiley,2004

[14] OMG, ―XML Metadata Interchange (XMI),v2.1‖,2004.

 IJMT Volume 6, Issue 4 ISSN: 2249-1058
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Marketing and Technology
http://www.ijmra.us

 126

April

2016

[15] Santosh Kumar Swain, Durga Prasad Mohapatra, Rajib Mall,‖Test Case Generation Based

on Use caseand Sequence Diagram‖, Internatonal Journal of Software Engineering, Vol.3 No.2

2010.

[16] I. K. El-Far and J. A. Whittaker, ―Model-based software testing,‖Encyclopedia on Software

Engineering, 2001.

[17] F. Fraikin and T. Leonhardt, ―Seditec—testing basedon sequence diagrams,‖ 2002.

[Online]. Available: citeseer.ist.psu.edu/fraikin02seditec.html

[18] Jean Hartmann, Claudio Imoberdorf, Michael Meisinger,―UML-Based Integration Testing―,

Proceedings of theInternational Symposium on Software Testing and Analysis,Portland, Oregon,

2000, pp. 60-70

[19] J. Offutt and A. Abdurazik, ―Generating Tests from UMLSpecifications‖, Second

International Conference on theUnified Modeling Language, Springer, New York 1999, pp.416-

429

[20] W. M. Ho, J.-M. Jquel, A. L. Guennec, and F. Pennaneac‘h,―UMLAUT: An extendible

UML transformation framework,‖ inAutomated Software Engineering, 1999, pp. 275–278.

[Online].Available: citeseer.ist.psu.edu/ho99umlaut.html

[21] T. J´eron and P. Morel, ―Test generation derived from model-checking,‖in CAV ‘99:

Proceedings of the 11th International Conference onComputer Aided Verification. London, UK:

Springer-Verlag, 1999,pp. 108–121.

[22] C. Jard and T. Jéron, ―Tgv: theory, principles and algorithms:A tool for the

automatic synthesis of conformance test cases for nondeterministic creactive systems,‖ Int. J.

Softw. Tools Technol. Transf.,vol. 7, no. 4, pp. 297–315, 2005.

[23] L. Bousquet, H. Martin, and J. Jzquel, ―Conformance testing from umlspecifications.‖

[Online]. Available: citeseer.ist.psu.edu/683853.html

[24] F. Z. M. Beyer, W. Dulz, ―Automated ttcn-3 test case generation bymeans of uml sequence

diagrams and markov chains,‖ in Asian TestSymposium, 2003, pp. 102–105.

 IJMT Volume 6, Issue 4 ISSN: 2249-1058
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Marketing and Technology
http://www.ijmra.us

 127

April

2016

[25] ALL PAIRS Tool. http://www.satisfice.com/tools.shtml.

[26] S. Kansomkeat and W. Rivepiboon, ―Automated-generating test case using UML statechart

diagrams‖, Proc. SAICSIT 2003, ACM 2003 pp. 296 – 300, 2003.

[27] Demillo, Lipton and Sayward, ―Hints on Test Data Selection:Help for the Practicing

Programmer‖, IEEE, 1978.

